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Abstract

Using a high statistics sample of photo-produced charm particles from the FOCUS
experiment at Fermilab, we report results of a search for eight rare and Standard-
Model-forbidden decays: D+, D+

s → h±µ∓µ+ (with h = π, K). Improvement over
previous results by a factor of 1.7–14 is realized. Our branching ratio upper limit
D+ → π+µ−µ+ of 8.8× 10−6 at the 90% C.L. is below the current MSSM R-Parity
violating constraint.

1 Introduction

The search for rare and forbidden decays of charm particles is enticing since
Standard Model (SM) predictions for interesting decays tend to be beyond
the reach of current experiments, and a signal is an indication of unexpected
physics.

Standard Model predictions [1–3] for the branching ratios of rare decays
D+, D+

s → h+µ−µ+ (with h = π,K) are dominated by long range effects
which are notoriously difficult to calculate. Even so, the differences between
the three predictions in [1–3], although using individual treatments for the

∗ See http://www-focus.fnal.gov/authors.html for additional author information.
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decay spectra, are quite manageable. For example, the predicted integrated
rate for D+ → π+µ−µ+ varies by only a factor of 2 while the experimental
limits are a factor of 5–10 away. Minimal Supersymmetric Standard Model
(MSSM) R-Parity violating extensions can significantly increase this rate. Ex-
perimental results for D+ → π+µ−µ+ currently set the best constraint for
the product of the MSSM R-Parity violating couplings: |λ′

22kλ21k|′ < 0.004 [1].
Until experiments reach the SM limit for these rare decays, a signal indicates
new physics or a needed refinement in the interpretation of the SM. Decays of
the form D+, D+

s → h−µ+µ+ (with h = π,K) are forbidden in the SM since
they violate lepton number conservation, and a signal in these modes is direct
evidence of new physics.

In this paper, we present new upper limits for the branching ratios of 3-body
di-muonic decays of the D+ and D+

s mesons mentioned above. Unless specif-
ically mentioned, all results include a lower limit of 0 at the 90% C.L.. Our
results represent a factor of 1.7–14 improvement over previous experimental
limits [4,5]. The result for the branching ratio upper limits of D+ → π+µ+µ−

of 8.8×10−6 @ 90% C.L. and D+
s → π+µ+µ− of 2.6×10−5 @ 90% C.L. are both

within a factor of 5 of the Standard Model (long range) predictions 1.9×10−6

[1] and 6.1 × 10−6 [2] respectively. The result for the branching ratio upper
limit D+ → π+µ+µ− of 8.8 × 10−6 @ 90% C.L. is below the MSSM R-Parity
violating constraint [1].

The data for this analysis were collected using the Wideband photoproduction
experiment FOCUS during the 1996–1997 fixed-target run at Fermilab. The
FOCUS detector is a large aperture, fixed-target spectrometer with excellent
vertexing and particle identification used to measure the interactions of high
energy photons on a segmented BeO target. The FOCUS beamline [6] and
detector [7–10] have been described elsewhere.

2 Event Selection

We look for D’s through the 3-body decay chains D+, D+
s → h∓µ±µ+ (where

the h represents a pion or a kaon) for rare decays and D+ → K−π+π+

or D+
s → K−K+π+ for normalization (charge conjugate modes are implied

throughout this paper). In order to search for the set of cuts that provides
signal optimization, we place initial (loose) requirements on the reconstructed
data to produce a base sample, and then we place a series of (tighter) cuts on
the base sample. The loose requirements consist of acceptance, momentum,
vertexing, and particle identification cuts. Note that for all cuts, care is taken
to ensure that the normalization modes receive the same cuts as the di-muon
modes where possible.
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Due to the finite lifetime and Lorentz boost of charm candidates, the primary
interaction vertex and secondary decay vertex can have a significant separation
along the beam direction. Secondary vertices are formed from 3 candidate
tracks, and the resulting momentum vector of the 3 tracks is used as a seed
to search for a primary vertex [7]. We require that the confidence level of the
secondary vertex fit (DCL) exceed 1%, the confidence level of the primary
vertex fit exceed 1%, the significance of separation between the primary and
secondary vertices (`/σ`) exceed 5, and the confidence level that any of the
secondary tracks is consistent with the primary vertex (ISO1) be less than
10%. The latter cut is included to remove the contamination from D∗+ decays
and other tracks originating from the primary that could be confused with
secondary tracks.

We use the Čerenkov system [8] to identify pions and kaons. For each track,
Wobs = −2 log (L) is computed, where L is the likelihood that a track is
consistent with a given particle hypothesis. For a candidate kaon, we require
Wobs(π)− Wobs(K) (kaonicity) be greater than 0.5. For a candidate pion in a
rare mode, we require Wobs(K) − Wobs(π) (pionicity) be greater than -15.

Muon candidates are required to be within the acceptance of either of the 2
muon systems in FOCUS [10]. We require the tracks in a normalizing mode
corresponding to muon tracks in a rare decay mode be in the acceptance of
one of the muon systems as well. Since the rate of muon misidentification
increases at low momentum, we place a requirement that the momentum of
“muon” tracks within the acceptance of the wide angle (outer) muon system
(P outer

µ ) be greater than 6 GeV/c and those within the low angle (inner) muon
system (P inner

µ ) be greater than 8 GeV/c. All muon candidates are required
to have associated hits in either muon system sufficient to meet a minimum
confidence level, µCL, of 1% for the muon hypothesis, and must pass additional
muon cuts depending on the system traversed. For the outer muon system,
muon candidates must traverse a minimum of 150 cm of material, produce hits
in 2 of 3 planes of the detector, and these 2 (or more) hits (called a cluster)
must not be shared by the other muon candidate. For the inner system, at least
4 of 6 planes of the detector must record hits consistent with the candidate
track, no more than 2 of these hits can be shared with the other candidate
muon track, and a fit to the hypothesis that the inner muon candidate track
had the same measured momentum in both magnets traversed was required to
exceed 1%. This last cut is used to reduce contamination from particles that
decay and produce a muon as they traverse the spectrometer. This cut is also
applied to the pions in the normalization modes, and the lowest momentum
kaon, when possible, for the D+

s normalization mode. Finally, all other tracks
in the event are fit to the muon hypothesis using the hits from a candidate
muon, and the highest confidence level from the fits, ISOµ, is saved. No ISOµ

cut was required for the base sample, but a 10% ISOµ is included in the set
of cuts used for sensitivity optimization.
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For the D+
s normalization signal, D+

s → K+K−π+, a cut was applied to reduce
the reflection when one of the pions from D+ → K−π+π+ is misidentified as
a kaon. Under the hypothesis that the same sign D+

s kaon track is assumed to
be pion, the invariant mass is calculated. If the new invariant mass is within 3
standard deviations of the D+ mass, the kaonicity of the same sign kaon must
exceed 6. Additionally, we require that the reconstructed K+K− invariant
mass be within 3 standard deviations of the φ mass.

Our analysis methodology (Section 3) requires a base sample of events of suf-
ficiently small size (150 events) for a reasonable processing time. Base samples
were obtained by applying the minimum `/σ` cut in the range of 5 to 8 which
brought the sample size below 150. The series of cuts applied to these sam-
ples was arranged into a grid. This cut grid was based on kinematic variables,
particle ID algorithm results, vertex quality, and event topology. For example,
once the lower cut in `/σ` was determined, the `/σ` cut was allowed to vary in
steps of 2 units up to a maximum of 21 or 22. The cuts used have been shown
to be effective for other charm decays besides those presented in this analysis.

Since the kaonicity cut can be applied to the kaon modes identically, there is
an inherent increase in the size of the cut grid when the pionicity cut is used
for the pion modes. To keep the size of the cut grid roughly the same, and to
prevent memory overflows in software that was difficult to modify, we reduced
the size of the cut grid for the pion modes. The grid (see Table 1) includes
cuts on `/σ`, ISO1, DCL, kaonicity, pionicity, µCL, ISOµ, and the momentum
of muon candidates. The normalizing modes used to compute the branching
ratios for D+ and D+

s are shown in Figure 1 for the loosest cuts in the grid.
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Fig. 1. Modes used to normalize the rare decay modes. The solid histograms repre-
sent the loosest cuts employed in the analysis, while the superimposed cross-hatched
histograms represent data which has had the tightest cuts used in the analysis ap-
plied. Notice the large reduction in background relative to the signal for both the
D+ and the D+

s modes over the range of cuts used.

In order to perform signal optimizations, calculate efficiencies, and estimate
yields, there is a distinction made between the signal region, where events for
the desired mode are expected to occur, and the background sidebands, where
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Table 1
Analysis cuts used in the cut grid. Variables are described in the text. The best cut
on average represents a point on the cut grid used in a systematic check of our result
that is described in the “Systematic Checks and Results” section of the paper. Cuts
indicated by { } are applied only to the kaon modes to keep the cut grid about
the same size for kaon and pion modes. Notice that the cuts removed for the pion
modes are chosen either very far from the “Best Cut” (explained later in the text),
or represent a small reduction in the stepping of a cut that varies logarithmically
(ISO1).

Variable Cut Values Used in the Grid Best Cut on Average

`/σ` > 5 → 22 > 13 (D+), 10 (D+
s )

ISO1 < 0.1, {0.03}, 0.01, {0.003}, 0.001 < 0.1

DCL > 1%, 2%, 4% > 1% (D+), 2% (D+
s )

Kaonicity (kaon modes) > 0.5, 1.0, 2.0 > 1.0

Pionicity (pion modes) > −15,−3,−1 > −3

µCL > 1%, 5%, 10% > 5%

ISOµ < 0.10, 1.0 < 1.0

P inner
µ (GeV/c) > 8, 9, 10, 11, 12, {14} > 9

P outer
µ (GeV/c) > 6, 7, 8, 9, {10} > 7

the amount of signal is expected to be minimal. The background sidebands
are used to estimate the amount of contamination in the signal region. We
define the signal region to be within 2 standard deviations of the nominal
reconstructed parent particle mass (i.e. either the D+ (± 20 MeV/c2) or the
D+

s (± 18 MeV/c2)) and the background region to be any invariant mass
reconstructed outside the signal regions between 1.7 and 2.1 GeV/c2. An ex-
ception is made for D+, D+

s → K−µ+µ+. For D+ → K−µ+µ+ the background
sidebands are required to be between 1.75 and 2.1 GeV/c2. This approximately
splits the expected contribution of D+ → K−π+π+, where the 2 pions are both
mis–identified as muons, equally between signal and background regions. For
D+

s → K−µ+µ+ we require the lower sideband to begin 2 standard deviations
above the D+ mass. This effectively removes the D+ → K−π+π+ signal that
comes from mis–identified muons. The centroid and standard deviation for
each mode are determined by fitting the reconstructed parent particle mass
in the normalization mode. Since there is a small shift in the mass centroid
between data and Monte Carlo, we use the data to determine the regions for
data and Monte Carlo to determine the regions for Monte Carlo.

The shape of the background in each rare mode is determined using a large
sample of photoproduction Monte Carlo events where all charm species and
known decay modes are simulated. The shape of the background is used to
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determine τ , which is the ratio of the number of background events expected
in the sideband region to the number of background events expected in the
signal region. An average τ is computed for each mode from all the τ ’s in
the cut grid for that particular mode. We find that the ratio of Monte Carlo
efficiencies and τ are stable over the cut combinations in the grid, but we
require at least 10 surviving Monte Carlo events to determine each τ used
in the average to prevent variations due to low Monte Carlo statistics in the
signal region.

These definitions are used in the determination of the branching ratio limits
in the analysis described below.

3 Analysis

The analysis technique emphasized a careful approach to the treatment of
backgrounds in a limited statistics analysis. The “blind” approach, to select
cuts that optimize signal efficiency relative to background sidebands, may
still lead to a downward fluctuation of the sidebands relative to the masked off
“signal” region and a more conservative limit on average [11]. Further, authors
frequently use the technique outlined by Feldman and Cousins [12] to calculate
the confidence levels used in the calculation of their limits. The Feldman–
Cousins approach does not explicitly include fluctuations of the background.
Indeed, the Particle Data Group [13] suggests presenting a measure of the
experimental sensitivity, defined as the average 90% confidence upper limit
of an ensemble of experiments with the expected background and no true
signal, in addition to the reported limit whenever experiments quote a result.
None of the methods suggested in the PDG, including the Cousins–Highland
method for including systematic errors in upper limits [14], properly deal with
fluctuations in the background and bias in selecting the data.

For this analysis, we chose a method suggested by Rolke and Lopez [15] which
includes the background fluctuations directly into the calculation of the likeli-
hood. The composite Poisson probability of finding x events in a signal region
and y events in background sidebands given a signal µ and a background b is:

Pµ,b(x, y) =
(µ + b)xe−(µ+b)

x!

(τb)ye−(τb)

y!
(1)

where τ is the expected ratio of the number of background events in the side-
band regions to the signal region. Rolke and Lopez have shown that including
the second Poisson factor in this expression leads to confidence intervals with
better coverage than those of Feldman–Cousins who only consider the first
factor.
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In a second paper Rolke and Lopez have shown that bias can also be intro-
duced during the selection of optimal cuts [11]. If a single cut is chosen based
partly on the level of background in the sidebands (as is typical), there is a
tendency to optimize on downward fluctuations and, hence, to underestimate
the background level in the signal region. The resultant limits from such an
“optimized” analysis, even though carried out in a “blind” fashion, will not
have the correct coverage.

In order to reduce the bias due to selection, Rolke and Lopez suggest the data
be sampled using a “Dual Bootstrap” method. In a bootstrap, the experimen-
tally observed data set of N events is used to create an ensemble of many
different N-event experiments or data sets, obtained by random sampling of
the original data set allowing repeated events. In the Dual Bootstrap, two
independently bootstrapped data sets are created. One set is used to optimize
the cuts which are then applied to the second set in order to calculate the
confidence intervals. This procedure is repeated 10,000 times and the median
value for the limits is the final result. The two bootstrap data sets are suf-
ficiently independent that the background estimate from the second is very
nearly unbiased.

We use the experimental sensitivity (see Eqn. 2 and Eqn. 3) as our figure
of merit to optimize cuts. A matrix or grid of possible data quality selec-
tion cuts are applied to the first bootstrap data set. The point in the multi-
dimensional cut grid which has the best (smallest) sensitivity is applied to the
second bootstrap data set. Limits for the branching ratio and a new sensitivity
are computed from this second set. The Dual Dootstrap procedure is shown
schematically in Figure 2.

For a given τ with y sideband events, the average 90% confidence upper limit
for the number of events in the signal region when there is no true signal,
Sτ (y), can be calculated from the Rolke-Lopez [15] 90% upper limit table as:

Sτ (y) =
∞∑

x=0

Uτ (x, y) · Py/τ(x) (2)

where Uτ (x, y) is the upper limit of the signal, and Py/τ(x) is the Poisson
probability of x when the expected background is y/τ .

The experimental sensitivity is:

Sensitivity = BRnorm
Sτ (y)

Ynorm

ε (3)

where the branching ratio of the normalization mode, BRnorm, comes from the
PDG [16], Ynorm is the yield of the normalization mode (determined from a
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sideband subtraction), and ε is the ratio, determined using Monte Carlo, of the
normalization mode efficiency divided by the rare decay mode efficiency. For
different bootstrap data sets and different cut sets, y, τ , Ynorm, Sτ (y), and ε
can be different. The sensitivity meets the requirement of a blind analysis, i.e.
it does not depend on the number of events observed in the signal region. In a
Dual Bootstrap procedure one sensitivity is calculated as the best sensitivity
for the first data set and a second (less-biased) sensitivity is calculated when
the “best” cuts are applied to the second data set.

The 90% confidence upper limit for the rare branching ratio is:

Upper Limit = BRnorm
Yrare

Ynorm

ε (4)

where Yrare = Uτ (z, y) is the Rolke-Lopez 90% confidence upper limit for the
signal yield given z events in the signal region. The lower limit has a similar
expression.

Rare Event Candidates

100 events

Randomly sample

100 events

1st Bootstrap Sample

Use
1st Bootstrap Cut

on
2nd Bootstrap Data

Randomly sample

2nd Bootstrap Sample

100 events

Save Cut Combination

Save Result

Choose
Best

Sensitivity

& Branching Ratios

Apply Cut Grid

Perform Dual Bootstrap
10,000 times

10,000 Sensitivities

Fig. 2. A flowchart for the Dual Bootstrap on a sample size of 100 events. Note the
parallel structure of the sampling with replacement that separates the cut selection
that optimizes sensitivity from the calculation of the sensitivities and branching
ratios used to determine the final result. Thus, only the data sidebands and the
expectation of the shape of the background is used in the cut selection, even though
events may be chosen from throughout the data set during the bootstrap process.
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The salient features of parameters coming from the Dual Bootstrap analysis
are illustrated in Figure 3 for the decay mode D+ → π+µ−µ+. Several fea-
tures are worth mentioning. The spread of the branching ratio upper limits is
in general larger than the spread of the best sensitivities. This happens since
the spread of the branching ratio upper limits is dominated by fluctuations
in the signal region while the spread in the best sensitivities stems from the
larger background region used in the estimate. This is a distinct advantage
when determining τ with large sidebands rather than smaller sidebands where
the fluctuations in the background can become more problematic. The single
bootstrap sensitivities sample the very lowest end of the sensitivity spectra,
and fluctuations often place the best bootstrap sensitivity below any calculated
from the data directly. Notice though, that the second bootstrap sensitivities
remove the bias and give a median sensitivity somewhat above the minimum
expected by the data. This is a safeguard against choosing a single cut that
produces an outlier or poor estimation of the true sensitivity. Thus, the Dual
Bootstrap method allows us to optimize the sensitivity for each decay mode
while retaining correct coverage. Also notice that the Dual Bootstrap branch-
ing ratio upper limits can cover a larger spread than the original branching
ratio upper limits shown for all cut combinations. This can be understood if
one realizes that for a small number of events in the signal region, the back-
ground can vary considerably in the second bootstrap, and the confidence
interval calculation amplifies the effect, producing a larger spread.

Single Bootstrap Best Sensitivities

Dual Bootstrap Sensitivities
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Dual Bootstrap Median B.R. Upper Limit

All Cut Combinations Sensitivity
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Dual Bootstrap Median Sensitivity
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Fig. 3. The distribution of results used in the determination of the branching ratio
confidence interval for the decay mode D+ → π+µ−µ+. In plot a), the sensitivity
distributions are shown, and in plot b) the branching ratio distributions are shown.
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4 Systematic Checks and Results

The largest sources of systematic uncertainty in this analysis are estimated
to come from uncertainties in the Monte Carlo simulation and uncertainty in
the branching ratios used for the normalizing modes. One source of systematic
uncertainty is included specifically in the upper limits through the τ param-
eter, while the other sources of systematic uncertainty were included using
the technique outlined in [14]. Using this method, the increase, ∆Un, in the
Poisson upper limit on the estimate for the number of rare decay events is:

∆Un =
1

2
U 2

RL
σ2

r

U
RL

+ b − n

U
RL

+ b
(5)

where U
RL

represents the Rolke-Lopez 90% confidence upper limit for the
mean number of signal events, Yrare, b is the predicted background in the
signal region, n is the number of events found in the signal region and the
total relative systematic uncertainty is σr. For example, uncertainty in the
normalizing branching ratios and efficiencies used in the calculation of the rare
branching ratios is translated to a percent or relative error in the estimation
of Yrare.

The relative systematic uncertainty from the normalizing branching ratios,
σPDG, comes from the PDG [16]. The relative systematic uncertainty stemming
from the simulation of the data comes from the simulation of the experimental
trigger, σTrigger, and the estimation of the efficiency of the outer muon system,
σµID. Since the FOCUS trigger requires a minimum energy be deposited in
the calorimetry, muons and hadrons will deposit very different energies, and
the trigger simulation must account for any difference. The difference between
three very different simulations is used to estimate this uncertainty: a full
GEANT [17] simulation of the calorimetry, a pre–stored shower library gen-
erated with GEANT which selects the calorimetry response based on particle
types, energies, and locations, and a simulation based on the parameterized
average response in data of the calorimetry based on incident particle types
and energies. The relative systematic error due to the outer muon identifica-
tion is estimated by looking at the difference in the Monte Carlo rare decay
efficiency for 2 different estimations of the the outer muon identification effi-
ciency. One method employs the overlap between the inner and outer systems
(very parallel muons coming from far upstream of the experiment can impact
both systems), and the other method uses 2 hits in the outer system to predict
a third hit. The final source of systematic error is due to the uncertainty in
the modelling of the muon misidentification used when τ is calculated for the
D+ → K−µ+µ+ decay mode. This uncertainty is estimated by boosting the
contribution of D+ → K−π+π+ in the photoproduction Monte Carlo by twice
the amount needed to match the amount of D+ → K−π+π+ seen when one
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of the pions is misidentified by a muon. The more conservative τ is then used.
The small statistical errors from the ratio of Monte Carlo efficiencies and the
error in the yield of the normalization modes did not contribute significantly
to the systematic error.

The sources of relative systematic error for each mode are shown in Table 2.
The total relative systematic uncertainty is obtained by adding all the contri-
butions in quadrature. The effect on the rare branching ratio is calculated for
each bootstrap sample and is naturally included in the ensemble result.

Table 2
Contributions to the relative systematic uncertainty, σr, in %.

Decay Mode σTrigger σµID σPDG σr

D+ → K+µ+µ− 2.8 1.9 6.7 7.5

D+ → K−µ+µ+ 2.7 2.6 6.7 7.7

D+ → π+µ+µ− 2.5 2.7 6.7 7.6

D+ → π−µ+µ+ 2.0 2.6 6.7 7.5

D+
s → K+µ+µ− 3.0 1.9 27.3 27.5

D+
s → K−µ+µ+ 2.3 2.5 27.3 27.5

D+
s → π+µ+µ− 3.6 2.7 27.3 27.7

D+
s → π−µ+µ+ 3.0 2.8 27.3 27.6

To compare the Dual Bootstrap results to a more traditional “blind” analysis,
another technique was used that selected a unique set of cuts, or point on
the cut grid. Since the D+ and D+

s lifetimes and production topology differ,
a separate point on the cut grid was determined for each. The cuts used to
determine the best sensitivities in the first bootstrap are saved for all four
rare modes of a parent particle. A point in the multi-dimensional cut grid is
determined by choosing cuts closest to the average value of each saved cut (see
Figure 4). The cuts represented by these 2 cut grid points, one for the D+ and
one for the D+

s , are then applied to the respective modes once in the spirit of
a more traditional “blind” analysis. A branching ratio limit is computed using
the resultant data histogram and the previous definitions for the signal region,
the background sidebands, and τ . The best average cuts are shown in Table 1,
and the data histograms resulting from this check are shown in Figures 5 and
6. A comparison was also made between the confidence limit calculated using
the Rolke-Lopez method [15] and the Feldman–Cousins method [12]. Little
difference was seen. We stress that these checks are provided as a convenience
to the reader. As stated previously, the methods of Rolke and Lopez [11,15]
have been demonstrated to provide correct coverage, whereas the coverage of
the checks mentioned has either not been studied or, in the case of Feldman-
Cousins where background fluctuations are not considered, has been shown to
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be incorrect.

100 events

 Bootstrap Sample

Randomly sample

100 events
(Same Topology/Parent)
Rare Event Candidates

Sensitivity
Best

Choose

Apply Cut Grid

Find Average Cut
Perform Bootstrap

10,000 times

Save Cut Combination

from Ensemble 
Choose Closest Point on Grid

Apply Chosen Point on Cut Grid to Data
Calculate Branching Ratio Upper Limit

Fig. 4. A flowchart for the cut bootstrap on a sample size of 100 events. This figure
should be compared to Figure 2. In this technique we determine an average “best
cut” for the data using only the data sidebands and the expected shape of the
background.

No significant evidence for the observation of any of the rare decay modes
was seen. All modes except D+ → K−µ+µ+ had a 90% lower limit for the
branching ratio of zero. For D+ → K−µ+µ+, the 96% lower limit was zero. The
results of the analysis are presented in Table 3 below. There is good agreement
between the Dual Bootstrap branching ratios (for both the Feldman-Cousins
and Rolke-Lopez limits), the sensitivities, and the single cut systematic checks.

5 Summary and Conclusions

The FOCUS results from this analysis are shown in comparison to previous
best results and recent theory in Table 4. Our results are a substantial im-
provement over previous results [4,5] and the FOCUS result for the branching
ratio upper limit D+ → π+µ+µ− of 8.8 × 10−6 @ 90% C.L. is lower than the
current MSSM R-Parity violating constraint [1] for this mode.
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Fig. 5. Data used in the single cut systematic check for the D+ decay modes. Note
that the τ ’s shown on the plots are the same as those used for the Dual Bootstrap
analysis. The solid histogram entries correspond to events in the signal region.
The cross-hatched areas to either side of the normalization mode signal correspond
to the data used for the sideband subtraction. The singly hatched areas in the
di-muon mode histograms correspond to the signal region, while the cross-hatched
areas correspond to an excluded region. All the other data and area shown in the
di-muon histograms are used for the background estimate.
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14



K+K−π+

0

2000

4000

6000

8000

1.7 1.8 1.9 2 2.1
GeV/c2

E
ve

nt
s/

0.
00

8 
G

eV
/c2

D+
s Yield =9906 ± 144

D+
s Rare Decay Modes

from the single cut check

Mass

K+µ+µ−

0

1

2

3

4

1.7 1.8 1.9 2 2.1
GeV/c2

E
ve

nt
s/

0.
00

8 
G

eV
/c2 Sideband = 26

Signal = 3
τ = 10.5
ε = 1.78

Mass

K−µ+µ+

0

1

2

3

4

1.9 1.95 2 2.05 2.1
GeV/c2

E
ve

nt
s/

0.
00

4 
G

eV
/c2 Sideband = 1

Signal = 0
τ = 3.0
ε = 1.78

Mass

π+µ+µ−

0

1

2

3

4

1.7 1.8 1.9 2 2.1
GeV/c2

E
ve

nt
s/

0.
00

8 
G

eV
/c2 Sideband = 30

Signal = 1
τ = 11.0
ε = 1.74

Mass

π−µ+µ+

0

1

2

3

4

1.7 1.8 1.9 2 2.1
GeV/c2

E
ve

nt
s/

0.
00

8 
G

eV
/c2 Sideband = 10

Signal = 1
τ = 11.5
ε = 1.65

Mass

Fig. 6. Data used in the single cut systematic check for the D+
s decay modes. Note

that the τ ’s shown on the plots are the same as those used for the Dual Bootstrap
analysis. The solid histogram entries correspond to events in the signal region.
The cross-hatched areas to either side of the normalization mode signal correspond
to the data used for the sideband subtraction. The singly hatched areas in the
di-muon mode histograms correspond to the signal region, while the cross-hatched
areas correspond to an excluded region. All the other data and area shown in the
di-muon histograms are used for the background estimate.
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Table 3
FOCUS results with and without incorporated systematic errors for the modes
shown. Each number represents a 90% confidence upper limit for the brancing ra-
tio of the decay mode listed. F-C represents the Feldman-Cousins 90% confidence
upper limit. R-L represents the Rolke-Lopez 90% confidence upper limit. Note the
relatively minor differences between the sensitivities, the Feldman-Cousins limits
and the Rolke-Lopez limits. Our final result is the Rolke-Lopez 90% confidence up-
per limit including the systematic error shown in the fifth column of the table. The
single cut check result, which also includes the systematic error, shown in the last
column of the table, agrees with our final result as well. All modes are (×10−6).

Decay Sensitivity F-C R-L R-L incl. Single Cut

Mode σr incl. σr

D+ → K+µ+µ− 7.5 11 9.1 9.2 12

D+ → K−µ+µ+ 4.8 13 13 13 12

D+ → π+µ+µ− 7.6 9.3 8.7 8.8 7.4

D+ → π−µ+µ+ 5.5 4.6 4.8 4.8 5.1

D+
s → K+µ+µ− 33 31 33 36 38

D+
s → K−µ+µ+ 21 11 13 13 20

D+
s → π+µ+µ− 31 20 24 26 18

D+
s → π−µ+µ+ 23 29 26 29 22
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Table 4
FOCUS results compared to other experiments and recent theory. The previous
limits, except for the E687 D+ → K−µ+µ+ [4] are from Fermilab experiment E791
[5]. The theory estimates come from [2] (SM-1), [3] (SM-3), and [1] (R-Parity MSSM
and SM-2). Note that the SM estimates from [1] use a formalism close to [3], and
at present there is some discrepancy in the invariant Mll mass behavior for the SM
estimates in SM-3 [1] and SM-1 [2]. All modes shown are (×10−6).

Decay This SM-1 SM-2 SM-3 MSSM Previous

Mode Analysis R-Parity Best

D+ → K+µ−µ+ 9.2 0.007 - - - 44

D+ → K−µ+µ+ 13 - - - - 120

D+ → π+µ−µ+ 8.8 1.0 1.9 1.8 15 15

D+ → π−µ+µ+ 4.8 - - - - 17

D+
s → K+µ−µ+ 36 0.043 - - - 140

D+
s → K−µ+µ+ 13 - - - - 180

D+
s → π+µ−µ+ 26 6.1 - - - 140

D+
s → π−µ+µ+ 29 - - - - 82
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